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NUDGED ELASTIC BAND SIMULATIONS OF KINK PAIRS IN TUNGSTEN -- David Cereceda and 

Jaime Marian (Lawrence Livermore National Laboratory and University of California at Los Angeles) 

OBJECTIVE 

The objective of this work is to calculate properties of tungsten at the atomistic level that are key to 

predicting the yield stress and flow stress of the material. 

SUMMARY 

Atomistic techniques have been used to calculate energy barriers for dislocation motion that control the 

strength (yield stress and flow stress) of the material.  In particular, the calculations focus on the change 

in enthalpy as a straight dislocation moves through the crystal lattice (the Peierls barrier) and kink pair 

formation enthalpy that controls the thermally activated double-kink mechanism important at low to 

moderate stresses.  A novel means of assessing kink widths within atomistic simulations is introduced. 

PROGRESS AND STATUS 

1 Introduction 

The movement of dislocations can be considered as a set of successive processes that define a pathway 

through the potential energy landscape. Each of these processes happens between two configurations of 

atoms that are local minima corresponding to straight dislocations in equilibrium, providing information 

about the activation energy of the process and what intermediate equilibrium configurations may exist 

along the transition. 

The nucleation and propagation of kink pairs between these local minima appears to be one of 

the underlying mechanisms that explain some of the characteristics of the motion of dislocations. 

Below, we describe the general ideas on how these processes are studied by the ‘nudged elastic 

band’ (NEB) method discussed in more detail by Henkelman et al. [1] and by Tadmor and Miller in section 

6.3.1 of the book Modeling Materials [2]. 

In the NEB method, a replica of a system with N atoms is defined by a N × 3 matrix that contains 

the positions of all the atoms in the system, . Given a total number of R replicas to 

study the movement of a dislocation between two consecutive Peierls valleys, the first and last replicas, 

P
1 

and P
R 

, are at local energy minima in the energy landscape. All the other intermediate replicas can be 

characterized in different ways, but they are not in equilibrium, exhibiting a force on the atoms of each 

replica i that comes from the non-zero gradient of the potential energy 

 

The minimization of these forces would displace each intermediate replica to one of the local minima. In 

the NEB method, replicas 1 and R are fixed, and each intermediate replica is connected to the previous 

and next replica by a spring of constant k. These springs introduce a new force F
i

spring that depends on the 

value of the spring constant. If k is small, the spring forces will not affect the minimization and the replicas 

will fall to one of the local minima. If k is big, the replicas are more rigid, and the spring forces will define a 

higher-energy path. 



Considering the combined action of these two types of forces, the 3N-dimensional force on replica i, F
i 

, is 

defined as 

 

where 

 

t
i 

is the 3N-dimensional tangent to the path at replica i, is the component of the forces derived 

from the potential energy that is perpendicular to the path and  is the component of the spring 

forces acting parallel to the path.  In this distribution of forces, will attempt to move each replica 

vertically to the minima and will attempt to move it along the reaction coordinate. The minimum 

energy path (MEP) between Peierls valleys can now be obtained by running an algorithm that moves the 

atomistic configurations of all the replicas until the global force defined in Eq.2 is reduced to zero. 

2 Computational details 

The principal axes x, y, and z, of the simulation box were oriented along the ]111[
2

1
, ]121[  , and ]011[  

directions, corresponding to the line, glide and normal directions, respectively, of the screw dislocation. 

The dimensions of the simulation box were chosen to maximize the physical fidelity of the results while 

keeping the computational cost manageable. According to these criteria the dimensions are: Lx = 27.2 nm 

(100 b), Ly =10.8 nm, and Lz = 10.7 nm, with a total number of 208300 atoms. 

Two screw dislocations with Burgers vector b = ]111[
2

1
 are generated by using the isotropic 

elastic displacement solution [3] in two independent simulation boxes (one dislocation per box) with the 

orientation and dimensions described before. The first dislocation d1 is generated at the center of the box. 

The second dislocation d2 is generated at a distance
1
 of 

0
3

6
a  from the center of the simulation box along 

the glide direction ]121[ , which corresponds to the distance between two consecutive Peierls valleys in 

that direction.  

Prior to the NEB simulations, dislocations d1 and d2 are relaxed using the conjugate gradient 

algorithm implemented in LAMMPS [4]. Periodic boundary conditions are applied in the x direction while 

non-periodic and shrink-wrapped boundary conditions are applied in the y and z directions. 

A stress range from zero to the Peierls stress of the potential is studied by applying shear stress 

σxz. To reproduce the effect of this applied stress, a external force fx is added to the atoms in the top and 

bottom surfaces along the normal direction ]011[ . 

                                                      
1
 a0 is the lattice parameter of the interatomic potential used in the simulations. 



 

 

The external force per atom satisfies , where σ is the desired stress and Ns is the number of 

atoms in each surface. 

The MEP is obtained using the NEB method described before [1, 4, 5, 6, 7]. In this work we 

present two different types of NEB simulations depending on the intermediate configurations: straight 

dislocations or kink-pairs. Both of them use a total of 31 replicas, a spring constant of 1 eV Å
−1 

and set 

relaxed dislocations d1 and d2 as the initial (1) and final (R) configurations respectively. 

In this work we have used two different interatomic potential parameterized for tungsten: an 

embedded-atom method (EAM) potential [8] and a modified embedded-atom method (MEAM) potential 

[9]. Both of them predict the correct symmetric core structure at 0 K.  They predict a Peierls stress of 2.03 

and 3.2 GPa, respectively. 

3 Results 

3.1 Enthalpy and Energy Barriers 

Straight dislocations 

For the study of a straight dislocation moving between two consecutive Peierls valleys along the glide 

direction, the initial coordinates of all the atoms in the intermediate replica i, P
i 

0
, are set to values linearly 

interpolated between the corresponding atoms in replicas 1 and R. 

 

where i=2 . . . R-1.Therefore, the initial path of the NEB simulation contains a single dislocation for every 

replica.  

The dimension along the dislocation line is reduced to Lx = 1.36 nm (5 b). In contrast with the 

study of kink-pairs where a value of Lx = 27.2 nm (100 b) is required for the nucleation of the kinks, this 

reduced size of the box is big enough for the straight dislocation to reproduce the physical fidelity of the 

results while decreasing the computational cost of the simulations. 

 

(a) dislocation d1                                (b) dislocation d2  

Figure 1: Position of the first d1 and second d2 dislocation with (1 0 1) plane.  



For a given replica i, its enthalpy, Hi, includes the contribution of the internal energy and the mechanical 

work generated by the applied stress 

 

where Ui is the internal energy of the replica, σ is the applied stress and θr is the reaction coordinate 

along the MEP. The enthalpy barrier per unit length is represented in Fig.2 as the difference between the 

enthalpy of each replica and the enthalpy of the initial configuration of the NEB simulation. One can notice 

that the increase in the applied stress increases the negative slope of the enthalpy barrier and decreases 

the maximum value achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Eq.4, the energy barrier is obtained by adding the mechanical work to the enthalpy. 

Similar to the enthalpy barrier, the energy barrier per unit length is represented in Fig.3.a as the 

difference between the energy of each replica and the energy of the initial configuration of the NEB 

simulation. In Fig.3.b, energies and reaction coordinates were shifted to overlap the potential minima for 

the different applied stresses [10]. 

 

Figure 2: Enthalpy barrier per Burgers vector for a straight screw dislocation with normal plane 

]011[ , computed with the NEB method using the EAM potential under the full range of applied 

stress.  
 



In addition to the study of the }110{111
2

1
 screw dislocation, the Peierls potential for the 

}112{111
2

1
 screw dislocation was also studied.  In this case the directions ]111[

2

1
, ]011[ , and 

]121[  correspond to the line, glide and normal directions of the simulation box, respectively. The second 

dislocation d2 is generated at a distance of 02a  from the center of the simulation box along the new 

glide direction ]011[ . For this orientation of the system Fig4.b shows a MEP with two barriers to move 

the straight dislocation between two consecutive Peierls valleys along the (1 2 1) plane. These results, in 

addition to the results of Fig.5.a, where the energy barriers along the )110(  and )121(  planes are 

plotted together at 0 MPa, suggest that the MEP along the )121(  plane can be explained as two partial 

MEP along the x plane. Therefore the study of the kink-pair enthalpy has been completed only for the

}110{111
2

1
 system. 

  



 

 

(a) 

 

(b) 

Figure 3: Energy barrier per Burgers vector for a straight screw dislocation with normal plane 

)110( and EAM potential.  

 



 

  

 

(a) 

 

 

(b) 

Figure 4: (a) Position of dislocations d1 and d2 when the screw is oriented with )121( as the normal plane. (b) 

Enthalpy barrier per Burgers vector for a straight screw dislocation with normal plane )121( , computed with 

the NEB method using the EAM potential. 



 

  

 

(a) EAM potential  

 

(b) MEAM potential  
 

Figure 5: Energy barrier at 0 MPa for the )110(  and )121( planes versus the 

reaction coordinate in units of the glide direction, ]121[ and ]110[  respectively. 



The enthalpy and energy barriers have also been computed for more accurate and more 

expensive [11] MEAM potential. The results of Fig.6.b and the comparison between Fig.5.a and Fig.5.b 

reflect a more sinusoidal behavior of the MEAM potential, in agreement with the results of all the bcc 

transition metals [12]. 

Kink-pairs 

For the study of the enthalpy and energy barriers in kink-pairs, the initial configurations of the 

intermediate replicas 2, 3, …,  R-1 contain a kink pair in the simulation box. The width of the kink pair w 

depends on the number of the replica i as follows  

 

where i=2 . . . R-1. The initial coordinates of the atoms in the intermediate replicas correspond to the 

initial configuration except for a region of width wi around the YZ central plane where atomic positions are 

taken from the final configuration [13]. 

In this case, the initial path of the NEB simulation contains a single dislocation for the initial and 

final replica, and a kink pair for the intermediate replicas 2 . . . R-1. 

  

 

(c) Energy barrier (shifted)  
 

Figure 6: Enthalpy and energy barriers versus the reaction coordinate in units of the 

glide direction, ]121[ , for the MEAM potential. 



 

 

For each value of applied stress, the real pathway between two consecutive Peierls valleys is 

defined by the envelope of minimum enthalpy when overlapping the enthalpy barriers of the straight 

dislocation and the kink-pair.  

 

where HMEP(i) is the enthalpy of the replica i defined by the MEP, Hdisloc(i) is the enthalpy of the replica i at 

the end of the NEB simulation when the initial configurations of the intermediate replicas are straight 

dislocations and Hkp(i) is the enthalpy of the replica i at the end of the NEB simulation when the initial 

configurations of the intermediate replicas are kink-pairs. 

The point A in Fig.7 where the enthalpy barriers of the straight dislocation and the kink-pair 

intersect represents the state where the kink-pair is nucleated, and it defines, for a specific applied stress, 

the enthalpy and width of the kink-pair. The point B where the enthalpy barriers of the straight dislocation 

and the kink-pair also intersect, but in this case with a negative slope, represents the state where the 

kink-pair is totally expanded and becomes a straight dislocation situated in the next Peierls valley. All the 

replicas in the segment AB contain a kink-pair with an increased width. 

  

 

Figure 7: Enthalpy barrier when the initial configurations of the intermediate replicas 

are straight dislocations, kink-pairs, and the resultant envelope of minimum enthalpy 

of this two cases for the EAM potential at 600 MPa. 



3.2 Kink-Pair Enthalpy 

The interest of obtaining the kink-pair enthalpy as a function of the stress comes from the important role 

that this variable plays when defining the nucleation rate of a kink-pair, jkp. This nucleation rate can be 

defined as: 

 

where 0  is an attempt frequency, k is Boltzmann’s constant, T is the temperature and ΔFkp is the (Gibbs) 

free energy difference resulting from the nucleation of an embryonic kink pair, i.e. one with the minimum 

lattice separation. The 1/2 factor arises from the fact that it is only necessary to take the dislocation to the 

activated state (saddle point) to achieve a transition. This is only appropriate for cases where the free 

energy landscape is symmetric about the midpoint of the reaction coordinate. Since figures 3.b and 6.c 

are mostly symmetric and bcc metals reflect a sinusoidal behavior [12], our case of study satisfies the 

conditions to use the 1/2 factor. 

  

 

Figure 8: Enthalpy barrier of the straight dislocation at 0 MPa and the envelope of 

minimum enthalpy for the full range of applied stress 0 -1600 MPa and EAM 

potential. 



 

The free energy can be defined as:  

 

where ΔH is the enthalpy and ΔS the entropy. Assuming that the entropy can be taken as ΔS ∼ 3k, the 

enthalpy is the missing variable to compute the nucleation rate of the kink-pair.  

The atomistic data in Fig. 9 shows the dependence of the kink-pair enthalpy as a function of the 

applied stress. It results from obtaining, for each value of applied stress, the enthalpy of the point of 

intersection A in Fig. 7. As we expected, the value of the kink-pair enthalpy tends to zero when the 

applied stress is close to the Peierls stress. 

To obtain the kink-pair enthalpy at 0 MPa the procedure developed by Ventelon et al. [14] was 

used, where ‘the formation energy of a single kink is calculated as the difference between the energy of a 

kinked screw-dislocation and the energy normalized to the same number of atoms of a straight dislocation 

lying in a single Peierls valley’. The formation enthalpy (equivalent to the energy since there is no 

mechanical work at 0 MPa) of the kink-pair at 0 MPa is obtained as the sum of the formation enthalpies 

for the left and right kink. Fig.10 shows the convergence of the formation enthalpies with the number of 

atoms per plane perpendicular to the Burgers vector, obtaining a value of 1.701 eV for the EAM potential. 

Experimentally, Brunner [15] has obtained a value of 1.75 eV from the temperature dependence of flow 

stress measurements in W, in very good agreement with the calculated value. 

 
Figure 9: Kink-pair formation enthalpy comparing atomistic simulations using EAM potential and 

the LOS model fitted with the same potential. 



 

3.3 Kink-Pair Width  

As it was described in section 3.1, the study of the enthalpy barrier in kink-pairs requires that the initial 

path of the NEB simulation contains a single dislocation for the initial and final replica, while the 

intermediate replicas (2 . . . R-1) contain a kink pair of a specific width. The initial and final replicas 

maintain their dislocation shape after the NEB simulation. Some of the intermediate replicas achieve the 

minimum along the path in the form of a dislocation while some others keep the kink pair shape with a 

different width from the one that was imposed when defining the initial configurations of the intermediate 

replicas. 

The envelope of minimum enthalpy represented in Fig. 7 gives an idea of when to expect the 

change of shape between dislocation and kink pair: intermediate replicas in regions 0-A and B-1 have a 

dislocation shape, whereas, intermediate replicas in region A-B have a kink pair shape. This can also be 

probed by visualizing the relaxed replicas via Ovito [16]. Figure 11 shows the results of this visualization, 

where the atoms defining the dislocation and the kink pair have been highlighted using the common 

neighbor analysis (CNA) technique [17, 18, 19]. 

  

 
 

Figure 10: Kink formation enthalpies as a function of the number of atoms per Burgers vector. 



 

Atomistic visualizations of Fig. 11 using the CNA technique present kink pairs with a sharp shape 

and do not reproduce the details of their profile, required to determine the width. In order to obtain the 

details on the shape of the replicas, we suggest an analytical methodology that takes into account the 

coordinates of all the atoms in the simulation box and the displacement field associated with the 

dislocation. 

The steps to obtain the shape of each replica with this analytical method suggested are: 

i. The simulation box is divided into slices along the dislocation line direction x. Each slice 

has a width of b/3 and contains the atoms of one single plane of the ABC stacking 

sequence of {111} planes in bcc metals. 

ii. For each slice, a grid of nodes that are candidates to host the centroid of the dislocation 

is created. The grid spacing would determine the efficiency of the method in terms of the 

precision of the results and the computational cost. The purpose is to identify between all 

the possible nodes in the grid, the node that is closer to the real position of the centroid of 

the dislocation. 

iii. Given a perfect bcc lattice oriented with x, y and z axes corresponding to the line, glide 

and normal directions respectively, inserting a screw dislocation in the box requires that 

every atom i is displaced according to the following field [3]: 

 

 

                         (a) initial replica                        (b) replica 3                        (c) replica 6 
 

 

                               (d) replica 12                        (e) replica 20                        (f) final replica 
 

Figure 11: Atomistic visualization obtained via Ovito [16] of different replicas along the final pathway of 

the NEB simulation at 1200 MPa. 



where R
x

i 

,R
y

i 

,R
z

i 

are the coordinates of an atom i in the perfect lattice and cx,cy,cz are the 

coordinates of the centroid of the dislocation. Applying the previous displacement field to 

all the atoms in the box guaranties that the centroid of the dislocation is at C(cx,cy,cz). 

If we want to obtain the centroid of a dislocation already inserted in a simulation box the 

previous process needs to be applied in reverse. Denoting r
x

i 

,r
y

i 

,r
z

i 

as the coordinates of 

an atom i in the distorted configuration with the screw dislocation, the centroid of the 

dislocation must satisfy the following condition for all the atoms i present in the slice: 

 

We then use as a measure error to locate the centroid. The displacement error on atom i 

when the centroid of the dislocation corresponds to node n is defined as: 

 
 

where R
x

n

,R
y

n

,R
z

n 

are the coordinates of the node n. Node n is considered the centroid of 

the dislocation for this slice if it minimizes, compared with all the other candidate nodes of 

the grid, the following sum: 

 

where Nat is the number of atoms in this slice. 

iv. We repeat step (iii) for all slices and obtain the kink pair shape shown in Fig. 12. 

  



 

It is important to consider that the positions of the centroid represented in Fig. 12 correspond only 

to the slices taken three by three, since the stacking sequence of {111} planes in bcc metals has three 

planes. The comparison between Fig. 11 and Fig. 12 reveals that the analytical method suggested 

provides the shape of the dislocation line with more detail than the atomistic visualizations. 

Results from Fig. 13 shows that the initial and final replicas (1 and 31 respectively) maintain their 

dislocation shape, some of the intermediate replicas achieve the minimum along the path in the form of a 

dislocation (replicas number 4, 28) and some others keep the kink pair shape (replica numbers 5, 6, 7, 

14, 21). 

The enthalpy of the point of intersection A in Fig. 7 determines the kink pair enthalpy for each 

value of applied stress in Fig. 9. Therefore, ideally, the width of the kink pair should be computed at the 

same point A. However, replicas are spread along the reaction pathway in a linear way so it cannot be 

guaranteed that there is a replica that corresponds exactly with A. Consequently, the kink pair width is 

going to be computed from the first replica that exhibits a kink pair behavior with a fraction of the 

dislocation line totally positioned on the next valley.  

  

 

Figure 12: Shape of kink pair for replica number 14 of the reaction pathway at 1200 MPa. 



 

Once the replica with the first kink pair behavior is selected, the kink pair width is measured 

between the inflection points of the two legs of the kink pair. When repeating this process for all the 

values of applied stress, Fig. 14 is obtained. 

  

 

Figure 13: Shape of several replicas from the final pathway of the NEB simulation when 

applying 1200 MPa. 

 
Figure 14: Kink pair width as a function of the applied stress. 



Acknowledgments 

This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract DE-AC52-07NA27344. Document number LLNL-TR-

666244. 

References 

[1] Methods for Finding Saddle Points and Minimum Energy Paths. G. Henkelman, G. Jöhannesson, and 

H. Jönsson. Kluwer Academic Publishers, 2000. 

[2] Ellad B. Tadmor and Ronald E. Miller. Modeling Materials, Atomistic and Multiscale Techniques. 

Cambridge University Press, 2011. 

[3] D. Hull and D. J. Bacon. Introduction to Dislocations. Butterworth-Heinemann, Oxford, 2001. 

[4] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. http://lammps.sandia.gov. 

Journal Of Computational Physics, 117(1):1-19, 1995. 

[5] G. Henkelman, B.P. Uberuaga, and H. Jonsson. A climbing image nudged elastic band method for 

finding saddle points and minimum energy paths. Journal of Chemical Physics, 113(22):9901-9904, 2000. 

[6] G. Henkelman and H. Jonsson. Improved tangent estimate in the nudged elastic band method for 

finding minimum energy paths and saddle points. Journal of Chemical Physics, 113(22):9978-9985, 2000. 

[7] Aiichiro Nakano. A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics 

simulation. Computer Physics Communications, 178(4):280-289, 2008. 

[8] Mihai-Cosmin Marinica et al. Interatomic potentials for modelling radiation defects and dislocations in 

tungsten. Journal of Physics: Condensed Matter, 25, 395502, 2013. 

[9] Hyoungki Park, Michael R. Fellinger, Thomas J. Lenosky, William W. Tipton, Dallas R. Trinkle, Sven P. 

Rudin, Christopher Woodward, John W. Wilkins, and Richard G. Hennig. Ab initio based empirical 

potential used to study the mechanical properties of molybdenum. Phys. Rev. B, 85:214121, 2012. 

[10] L. Proville, L. Ventelon, and D. Rodney. Prediction of the kink-pair formation enthalpy on screw 

dislocations in α-iron by a line tension model parametrized on empirical potentials and first-principles 

calculations. Physical Review B, 87(14):144106, 2013. 

[11] D. Cereceda, A. Stukowski, M. R. Gilbert, S. Queyreau, Lisa Ventelon, M-C Marinica, J. M. Perlado, 

and J. Marian. Assessment of interatomic potentials for atomistic analysis of static and dynamic 

properties of screw dislocations in W. Journal of Physics-Condensed Matter, 25(8):085702, 2013. 

[12] Christopher R. Weinberger, Garritt J. Tucker, and Stephen M. Foiles. Peierls potential of screw 

dislocations in bcc transition metals: Predictions from density functional theory. Physical Review B, 

87(5):054114, 2013. 

[13] David Rodney and Laurent Proville. Stress-dependent Peierls potential: Influence on kink-pair 

activation. Physical Review B, 79(9):194108, 2009. 

[14] L. Ventelon, F. Willaime, and P. Leyronnas. Atomistic simulation of single kinks of screw dislocations 

in α-fe. Journal of Nuclear Materials, 386-388(C):26-29, 2009. 



[15] D Brunner. Comparison of ow-stress measurements on high-purity tungsten single crystals with the 

kink-pair theory. Materials Transactions JIM, 41(1):152-160, 2000. 

[16] Alexander Stukowski. Visualization and analysis of atomistic simulation data with OVITO-the Open 

Visualization Tool. Modelling and Simulation in Materials Science And Engineering, 18(1), JAN 2010. 

[17] J. Dana. Honeycutt and Hans C. Andersen. Molecular dynamics study of melting and freezing of 

small Lennard-Jones clusters. The Journal of Physical Chemistry, 91(19):4950-4963, 1987. 

[18] Daniel Faken and Hannes Jnsson. Systematic analysis of local atomic structure combined with 3d 

computer graphics. Computational Materials Science, 2(2):279-286, 1994. 

[19] Helio Tsuzuki, Paulo S. Branicio, and Jos P. Rino. Structural characterization of deformed crystals by 

analysis of common atomic neighborhood. Computer Physics Communications, 177(6):518-523, 2007. 


